Proper mappings and dimension
نویسندگان
چکیده
منابع مشابه
Supervised dimension reduction mappings
Abstract. We propose a general principle to extend dimension reduction tools to explicit dimension reduction mappings and we show that this can serve as an interface to incorporate prior knowledge in the form of class labels. We explicitly demonstrate this technique by combining locally linear mappings which result from matrix learning vector quantization schemes with the t-distributed stochast...
متن کاملProper Holomorphic Mappings in Tetrablock
The theorem showing that there are no non-trivial proper holomorphic self-mappings in the tetrablock is proved. We obtain also some general extension results for proper holomorphic mappings and we prove that the Shilov boundary is invariant under proper holomorphic mappings between some classes of domains containing among others (m1, . . . , mn)-balanced domains. It is also shown that the tetra...
متن کاملQuasiconformal Mappings Which Increase Dimension
For any compact set E ⊂ R , d ≥ 1 , with Hausdorff dimension 0 < dim(E) < d and for any ε > 0 , there is a quasiconformal mapping (quasisymmetric if d = 1) f of R to itself such that dim(f(E)) > d− ε .
متن کاملThe Bergman Kernel Function and Proper Holomorphic Mappings
It is proved that a proper holomorphic mapping / between bounded complete Reinhardt domains extends holomorphically past the boundary and that if, in addition, /~'(0) = {0}, then / is a polynomial mapping. The proof is accomplished via a transformation rule for the Bergman kernel function under proper holomorphic mappings.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1971
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1971-0286085-6